Southend High School for Girls # A Level Transition Summer Task booklet # **MATHS** | N | ame: | ••••• | • • • • • • | | | | ••••• | | | | |---|------|-------|-------------|--|--|--|-------|--|--|--| |---|------|-------|-------------|--|--|--|-------|--|--|--| Maths Class: Maths Teacher: Please write all working out on paper. You will need to hand this work to your maths teacher by 30th September 2025. Please ensure you complete ALL 'PRACTICE' questions. The 'extend' sections are optional will gain you extra achievement points. Please ensure **ALL** your working out present. ### 1. Expanding brackets and simplifying expressions A LEVEL LINKS Scheme of work: 1a. Algebraic expressions - basic algebraic manipulation, indices and surds #### **Key points** - When you expand one set of brackets you must multiply everything inside the bracket by what is outside. - When you expand two linear expressions, each with two terms of the form ax + b, where $a \neq 0$ and $b \neq 0$, you create four terms. Two of these can usually be simplified by collecting like terms. #### Practice Expand. a $$3(2x-1)$$ **b** $$-2(5pq + 4q^2)$$ c $$-(3xy - 2y^2)$$ Expand and simplify. a $$7(3x+5)+6(2x-8)$$ **b** $$8(5p-2)-3(4p+9)$$ c $$9(3s+1)-5(6s-10)$$ d $$2(4x-3)-(3x+5)$$ Expand. a $$3x(4x + 8)$$ **b** $$4k(5k^2-12)$$ c $$-2h(6h^2+11h-5)$$ d $$-3s(4s^2 - 7s + 2)$$ Expand and simplify. a $$3(v^2-8)-4(v^2-5)$$ **b** $$2x(x+5) + 3x(x-7)$$ c $$4p(2p-1)-3p(5p-2)$$ d $$3b(4b-3)-b(6b-9)$$ 5 Expand $$\frac{1}{2}(2y - 8)$$ 6 Expand and simplify. a $$13-2(m+7)$$ **b** $$5p(p^2+6p)-9p(2p-3)$$ The diagram shows a rectangle. Write down an expression, in terms of x, for the area of the rectangle. Show that the area of the rectangle can be written as $21x^2 - 35x$ 7x Watch out! When multiplying (or dividing) positive and negative numbers, if the answer is '+'; if the signs are different the answer is '-'. signs are the same the Expand and simplify. a $$(x+4)(x+5)$$ **b** $$(x+7)(x+3)$$ c $$(x+7)(x-2)$$ d $$(x+5)(x-5)$$ e $$(2x+3)(x-1)$$ f $$(3x-2)(2x+1)$$ g $$(5x-3)(2x-5)$$ **h** $$(3x-2)(7+4x)$$ i $$(3x + 4y)(5y + 6x)$$ $$(x+5)^2$$ $$k (2x-7)^2$$ $$(4x - 3y)^2$$ - Expand and simplify $(x + 3)^2 + (x 4)^2$ - 10 Expand and simplify. $$\mathbf{a} \qquad \left(x + \frac{1}{x}\right) \left(x - \frac{2}{x}\right) \qquad \qquad \mathbf{b} \qquad \left(x + \frac{1}{x}\right)^2$$ **b** $$\left(x+\frac{1}{x}\right)^2$$ # 2. Surds and rationalising the denominator #### A LEVEL LINKS Scheme of work: 1a. Algebraic expressions - basic algebraic manipulation, indices and surds #### **Key points** - A surd is the square root of a number that is not a square number, for example $\sqrt{2}$, $\sqrt{3}$, $\sqrt{5}$, etc. - Surds can be used to give the exact value for an answer. - $\sqrt{ab} = \sqrt{a} \times \sqrt{b}$ - $\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$ - To rationalise the denominator means to remove the surd from the denominator of a fraction. - To rationalise $\frac{a}{\sqrt{b}}$ you multiply the numerator and denominator by the surd \sqrt{b} - To rationalise $\frac{a}{b+\sqrt{c}}$ you multiply the numerator and denominator by $b-\sqrt{c}$ #### Practice 1 Simplify. Hint One of the two numbers you choose at the start must be a square number. 2 Simplify. a $$\sqrt{72} + \sqrt{162}$$ e $$2\sqrt{28} + \sqrt{28}$$ b $$\sqrt{45} - 2\sqrt{5}$$ d $$\sqrt{75} - \sqrt{48}$$ f $$2\sqrt{12} - \sqrt{12} + \sqrt{27}$$ Watch out! Check you have chosen the highest square number at the start. 3 Expand and simplify. a $$(\sqrt{2} + \sqrt{3})(\sqrt{2} - \sqrt{3})$$ b $$(3+\sqrt{3})(5-\sqrt{12})$$ c $$(4-\sqrt{5})(\sqrt{45}+2)$$ d $$(5+\sqrt{2})(6-\sqrt{8})$$ 4 Rationalise and simplify, if possible. a $$\frac{1}{\sqrt{5}}$$ b $$\frac{1}{\sqrt{11}}$$ $$c = \frac{2}{\sqrt{7}}$$ d $$\frac{2}{\sqrt{8}}$$ $$\frac{2}{\sqrt{2}}$$ $$f = \frac{5}{\sqrt{5}}$$ $$g = \frac{\sqrt{8}}{\sqrt{24}}$$ $$h = \frac{\sqrt{5}}{\sqrt{45}}$$ 5 Rationalise and simplify. a $$\frac{1}{3-\sqrt{5}}$$ $$b = \frac{2}{4+\sqrt{3}}$$ #### Extend 6 Expand and simplify $(\sqrt{x} + \sqrt{y})(\sqrt{x} - \sqrt{y})$ 7 Rationalise and simplify, if possible. $$a = \frac{1}{\sqrt{9} - \sqrt{8}}$$ b $$\frac{1}{\sqrt{x}-\sqrt{y}}$$ ### 3. Rules of indices #### A LEVEL LINKS Scheme of work: 1a. Algebraic expressions - basic algebraic manipulation, indices and surds #### **Key points** - $\bullet \quad a^m \times a^n = a^{m+n}$ - $\bullet \quad \frac{a^m}{a^n} = a^{m-n}$ - $(a^m)^n = a^{mn}$ $a^0 = 1$ - $a^{\frac{1}{n}} = \sqrt[n]{a}$ i.e. the *n*th root of *a* - $\bullet \qquad a^{\frac{m}{n}} = \sqrt[n]{a^m} = \left(\sqrt[n]{a}\right)^m$ - $a^{-m} = \frac{1}{a^m}$ - The square root of a number produces two solutions, e.g. $\sqrt{16} = \pm 4$. #### **Practice** - Evaluate. - a 140 - 30 - Evaluate. - c $125^{\frac{1}{3}}$ d $16^{\frac{1}{4}}$ - Evaluate. - c $49^{\frac{3}{2}}$ - Evaluate. - a 5⁻² - 4-3 - 2-5 - d 6⁻² - Simplify. - $\mathbf{a} = \frac{3x^2 \times x^3}{2x^2}$ - $\mathbf{b} \qquad \frac{10x^5}{2x^2 \times x}$ - $c \frac{3x \times 2x^3}{2x^3}$ - $e \qquad \frac{y^2}{y^{\frac{1}{2}} \times y}$ - $\mathbf{f} \qquad \frac{c^{\frac{1}{2}}}{c^2 \times c^{\frac{3}{2}}}$ - $\mathbf{g} = \frac{\left(2x^2\right)^3}{4x^0}$ - $h = \frac{x^{\frac{1}{2}} \times x^{\frac{3}{2}}}{x^{-2} \times x^{3}}$ #### Watch out! Remember that any value raised to the power of zero is 1. This is the rule $a^0 = 1$. - Evaluate. - **b** $27^{-\frac{2}{3}}$ - e $\left(\frac{9}{16}\right)^{-\frac{1}{2}}$ f $\left(\frac{27}{64}\right)^{-\frac{2}{3}}$ 7 Write the following as a single power of x. $$a = \frac{1}{x}$$ $$\mathbf{b} = \frac{1}{x}$$ d $$\sqrt[5]{x^2}$$ $$e \frac{1}{\sqrt[3]{2}}$$ $$f = \frac{1}{\sqrt[3]{3}}$$ Write the following without negative or fractional powers. a $$x^{-3}$$ d $$x^{\frac{2}{3}}$$ e $$x^{-\frac{1}{2}}$$ 9 Write the following in the form ax^n . a $$5\sqrt{x}$$ $$\mathbf{b} = \frac{2}{r^3}$$ $$c = \frac{1}{3x^2}$$ d $$\frac{2}{\sqrt{x}}$$ $$e = \frac{4}{\sqrt[3]{x}}$$ #### **Extend** 10 Write as sums of powers of x. $$a = \frac{x^5 + 1}{x^2}$$ $$\mathbf{b}$$ $x^2 \left(x + \frac{1}{x} \right)$ **b** $$x^2 \left(x + \frac{1}{x} \right)$$ **c** $x^{-4} \left(x^2 + \frac{1}{x^3} \right)$ # 4. Factorising expressions #### A LEVEL LINKS Scheme of work: 1b. Quadratic functions - factorising, solving, graphs and the discriminants #### **Key points** - · Factorising an expression is the opposite of expanding the brackets. - A quadratic expression is in the form $ax^2 + bx + c$, where $a \neq 0$. - To factorise a quadratic equation find two numbers whose sum is b and whose product is ac. - An expression in the form $x^2 y^2$ is called the difference of two squares. It factorises to (x y)(x + y). #### Practice #### 1 Factorise. a $$6x^4y^3 - 10x^3y^4$$ **b** $$21a^3b^5 + 35a^5b^2$$ Hint Take the highest common factor outside the bracket. c $$25x^2y^2 - 10x^3y^2 + 15x^2y^3$$ #### 2 Factorise a $$x^2 + 7x + 12$$ **b** $$x^2 + 5x - 14$$ c $$x^2 - 11x + 30$$ **d** $$x^2 - 5x - 24$$ e $$x^2 - 7x - 18$$ $$f x^2 + x - 20$$ $$\mathbf{g} = x^2 - 3x - 40$$ **h** $$x^2 + 3x - 28$$ #### 3 Factorise a $$36x^2 - 49y^2$$ **b** $$4x^2 - 81y^2$$ c $$18a^2 - 200b^2c^2$$ #### 4 Factorise a $$2x^2 + x - 3$$ **b** $$6x^2 + 17x + 5$$ c $$2x^2 + 7x + 3$$ d $$9x^2 - 15x + 4$$ e $$10x^2 + 21x + 9$$ $$f 12x^2 - 38x + 20$$ #### 5 Simplify the algebraic fractions. $$a \frac{2x^2 + 4x}{x^2 - x}$$ $$\frac{x^2 + 3x}{x^2 + 2x - 3}$$ $$c \qquad \frac{x^2 - 2x - 8}{x^2 - 4x}$$ d $$\frac{x^2 - 5x}{x^2 - 25}$$ $$\frac{x^2 - x - 12}{x^2 - 4x}$$ $$\mathbf{f} = \frac{2x^2 + 14x}{2x^2 + 4x - 70}$$ #### 6 Simplify $$a = \frac{9x^2 - 16}{3x^2 + 17x - 28}$$ $$\mathbf{b} = \frac{2x^2 - 7x - 15}{3x^2 - 17x + 10}$$ $$c = \frac{4-25x^2}{10x^2-11x-6}$$ $$\mathbf{d} = \frac{6x^2 - x - 1}{2x^2 + 7x - 4}$$ 7 Simplify $$\sqrt{x^2 + 10x + 25}$$ 8 Simplify $$\frac{(x+2)^2 + 3(x+2)^2}{x^2 - 4}$$ # 5. Completing the square #### A LEVEL LINKS Scheme of work: 1b. Quadratic functions - factorising, solving, graphs and the discriminants #### **Key points** - Completing the square for a quadratic rearranges $ax^2 + bx + c$ into the form $p(x+q)^2 + r$ - If a ≠ 1, then factorise using a as a common factor. #### **Practice** 1 Write the following quadratic expressions in the form $(x+p)^2 + q$ **a** $$x^2 + 4x + 3$$ **b** $x^2 - 10x - 3$ **b** $$x^2 - 10x - 3$$ c $$x^2 - 8x$$ **d** $$x^2 + 6x$$ e $$x^2 - 2x + 7$$ $$f x^2 + 3x - 2$$ Write the following quadratic expressions in the form $p(x+q)^2 + r$ a $$2x^2 - 8x - 16$$ **a** $$2x^2 - 8x - 16$$ **b** $4x^2 - 8x - 16$ c $$3x^2 + 12x - 9$$ d $$2x^2 + 6x - 8$$ 3 Complete the square. a $$2x^2 + 3x + 6$$ **b** $$3x^2 - 2x$$ c $$5x^2 + 3x$$ d $$3x^2 + 5x + 3$$ #### Extend 4 Write $(25x^2 + 30x + 12)$ in the form $(ax + b)^2 + c$. # 6.1 Solving quadratic equations by factorisation #### A LEVEL LINKS Scheme of work: 1b. Quadratic functions - factorising, solving, graphs and the discriminants #### **Key points** - A quadratic equation is an equation in the form $ax^2 + bx + c = 0$ where $a \neq 0$. - To factorise a quadratic equation find two numbers whose sum is b and whose products is ac. - When the product of two numbers is 0, then at least one of the numbers must be 0. - . If a quadratic can be solved it will have two solutions (these may be equal). #### **Practice** #### 1 Solve a $$6x^2 + 4x = 0$$ c $$x^2 + 7x + 10 = 0$$ $$x^2 - 3x - 4 = 0$$ $$\mathbf{g}$$ $x^2 - 10x + 24 = 0$ i $$x^2 + 3x - 28 = 0$$ $$2x^2 - 7x - 4 = 0$$ **b** $$28x^2 - 21x = 0$$ d $$x^2 - 5x + 6 = 0$$ $$f x^2 + 3x - 10 = 0$$ **h** $$x^2 - 36 = 0$$ $$\mathbf{j}$$ $x^2 - 6x + 9 = 0$ $$1 \quad 3x^2 - 13x - 10 = 0$$ #### 2 Solve a $$x^2 - 3x = 10$$ $$x^2 + 5x = 24$$ e $$x(x+2) = 2x + 25$$ $$\mathbf{g}$$ $x(3x+1) = x^2 + 15$ **b** $$x^2 - 3 = 2x$$ d $$x^2 - 42 = x$$ $$\mathbf{f}$$ $x^2 - 30 = 3x - 2$ **h** $$3x(x-1) = 2(x+1)$$ #### Hint Get all terms onto one side of the equation. # 6.2 Solving quadratic equations by completing the square A LEVEL LINKS Scheme of work: 1b. Quadratic functions - factorising, solving, graphs and the discriminants #### **Key points** • Completing the square lets you write a quadratic equation in the form $p(x+q)^2 + r = 0$. #### Practice 3 Solve by completing the square. a $$x^2 - 4x - 3 = 0$$ $$x^2 + 8x - 5 = 0$$ $$e 2x^2 + 8x - 5 = 0$$ **b** $$x^2 - 10x + 4 = 0$$ d $$x^2 - 2x - 6 = 0$$ d $$x^2 - 2x - 6 = 0$$ f $5x^2 + 3x - 4 = 0$ 4 Solve by completing the square. a $$(x-4)(x+2) = 5$$ **b** $$2x^2 + 6x - 7 = 0$$ c $$x^2 - 5x + 3 = 0$$ Hint Get all terms onto one side of the equation. # 6.3 Solving quadratic equations by using the formula A LEVEL LINKS Scheme of work: 1b. Quadratic functions - factorising, solving, graphs and the discriminants #### **Key points** - Any quadratic equation of the form $ax^2 + bx + c = 0$ can be solved using the formula $x = \frac{-b \pm \sqrt{b^2 4ac}}{2a}$ - If b² 4ac is negative then the quadratic equation does not have any real solutions. - It is useful to write down the formula before substituting the values for a, b and c. #### Practice 5 Solve, giving your solutions in surd form. a $$3x^2 + 6x + 2 = 0$$ **b** $$2x^2 - 4x - 7 = 0$$ 6 Solve the equation $x^2 - 7x + 2 = 0$ Give your solutions in the form $\frac{a \pm \sqrt{b}}{c}$, where a, b and c are integers. 7 Solve $10x^2 + 3x + 3 = 5$ Give your solution in surd form. #### Hint Get all terms onto one side of the equation. - 8 Choose an appropriate method to solve each quadratic equation, giving your answer in surd form when necessary. - a 4x(x-1) = 3x-2 - **b** $10 = (x+1)^2$ - c x(3x-1) = 10 # 8.1 Solving linear simultaneous equations using the elimination method #### A LEVEL LINKS Scheme of work: 1c. Equations - quadratic/linear simultaneous #### **Key points** - Two equations are simultaneous when they are both true at the same time. - Solving simultaneous linear equations in two unknowns involves finding the value of each unknown which works for both equations. - Make sure that the coefficient of one of the unknowns is the same in both equations. - Eliminate this equal unknown by either subtracting or adding the two equations. #### **Practice** Solve these simultaneous equations. $$1 4x + y = 8$$ $$x + y = 5$$ $$3x + y = 7$$ $$3x + 2y = 5$$ $$3 4x + y = 3$$ $$3x - y = 11$$ $$4 3x + 4y = 7$$ $$x - 4y = 5$$ $$5 2x + y = 11$$ $$x - 3y = 9$$ $$6 2x + 3y = 11$$ $$3x + 2y = 4$$ # 8.2 Solving linear simultaneous equations using the substitution method #### A LEVEL LINKS **Scheme of work**: 1c. Equations – quadratic/linear simultaneous **Textbook**: Pure Year 1, 3.1 Linear simultaneous equations #### **Key points** The substitution method is the method most commonly used for A level. This is because it is the method used to solve linear and quadratic simultaneous equations. #### Practice Solve these simultaneous equations. $$7 y = x - 4 2x + 5y = 43$$ 8 $$y = 2x - 3$$ $5x - 3y = 11$ $$9 2y = 4x + 5$$ $$9x + 5y = 22$$ 10 $$2x = y - 2$$ $8x - 5y = -11$ 11 $$3x + 4y = 8$$ $2x - y = -13$ 12 $$3y = 4x - 7$$ $2y = 3x - 4$ 13 $$3x = y - 1$$ $2y - 2x = 3$ 14 $$3x + 2y + 1 = 0$$ $4y = 8 - x$ #### Extend 15 Solve the simultaneous equations 3x + 5y - 20 = 0 and $2(x + y) = \frac{3(y - x)}{4}$. # 9. Solving linear and quadratic simultaneous equations #### A LEVEL LINKS Scheme of work: 1c. Equations - quadratic/linear simultaneous #### Key points - · Make one of the unknowns the subject of the linear equation (rearranging where necessary). - Use the linear equation to substitute into the quadratic equation. - There are usually two pairs of solutions. #### **Practice** Solve these simultaneous equations. $$1 y = 2x + 1$$ $$x^2 + y^2 = 10$$ 3 $$y = x - 3$$ $$x^2 + y^2 = 5$$ $$5 \quad y = 3x - 5$$ $y = x^2 - 2x + 1$ $$y = x + 5$$ $x^2 + y^2 = 25$ 9 $$y = 2x$$ $$y = 2x y^2 - xy = 8$$ $$y = 6 - x x^2 + y^2 = 20$$ 4 $$y = 9 - 2x$$ $x^2 + y^2 = 17$ 6 $$y = x - 5$$ $y = x^2 - 5x - 12$ 10 $$2x + y = 11$$ $xy = 15$ 11 $$x-y=1$$ $x^2+y^2=3$ 12 $$y-x=2$$ $x^2 + xy = 3$ # 11. Linear inequalities #### A LEVEL LINKS Scheme of work: 1d. Inequalities - linear and quadratic (including graphical solutions) #### **Key points** - Solving linear inequalities uses similar methods to those for solving linear equations. - . When you multiply or divide an inequality by a negative number you need to reverse the inequality sign, e.g. < becomes >. #### **Practice** Solve these inequalities. **a** 4x > 16 **b** $5x - 7 \le 3$ **c** $1 \ge 3x + 4$ **d** 5-2x < 12 **e** $\frac{x}{2} \ge 5$ **f** $8 < 3 - \frac{x}{3}$ 2 Solve these inequalities. a $\frac{x}{5} < -4$ **b** $10 \ge 2x + 3$ **c** 7 - 3x > -5 3 Solve **a** $2-4x \ge 18$ **b** $3 \le 7x+10 \le 45$ **c** $6-2x \ge 4$ **d** $4x+17 \le 2-x$ **e** $4-5x \le -3x$ **f** $-4x \ge 24$ 4 Solve these inequalities. a $3t+1 \le t+6$ **b** $2(3n-1) \ge n+5$ 5 Solve. a 3(2-x) > 2(4-x) + 4 b 5(4-x) > 3(5-x) + 2 #### Extend Find the set of values of x for which $2x + 1 \ge 11$ and $4x - 2 \ge 16 - 2x$. # 12. Quadratic inequalities #### A LEVEL LINKS Scheme of work: 1d. Inequalities - linear and quadratic (including graphical solutions) #### **Key points** - First replace the inequality sign by = and solve the quadratic equation. - Sketch the graph of the quadratic function. - · Use the graph to find the values which satisfy the quadratic inequality. #### **Practice** - 1 Find the set of values of x for which $(x + 7)(x 4) \le 0$ - 2 Find the set of values of x for which $x^2 4x 12 \ge 0$ - 3 Find the set of values of x for which $2x^2 7x + 3 < 0$ - 4 Find the set of values of x for which $4x^2 + 4x 3 > 0$ - 5 Find the set of values of x for which $12 + x x^2 \ge 0$ #### Extend Find the set of values which satisfy the following inequalities. - 6 $x^2 + x \le 6$ - 7 x(2x-9) < -10 - 8 $6x^2 \ge 15 + x$